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Recommendation and User
Feedback
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1Photo credit: http://www.toptal.com/.
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Recommendation

Recommendation
Estimating how much a user will like an item (e.g., news article)

Figure 1: BBC News Must See Section 2

2Taken from https://www.bbc.com/news on 29 Nov 2019.
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Recommendation from User Implicit Feedback

User explicit feedback corresponds the user’s preferences that is
expressed by the user explicitly
• Movie ratings
• Product reviews

User implicit feedback corresponds to user interactions with the
system

• clicks
• bookmarks
• reading a news article
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User Clicks

Why click?
• Title/snippet is
attractive

• Ranked higher
• Relevant item

Why not click?
• Seeing title/snippet is enough
• Simply not seen, or requires
extra effort to be seen

• User-side reasons
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User Clicks (2)

Pros:
• Mostly aligned with user interests
• No user effort required (not intrusive)
• Easy to collect, no annotation required
• Vast in amount

Cons:
• Noisy, might not exactly reflect user interest
• Biased (position bias)
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Learning-to-Rank



Learning-to-Rank Approaches

Learning-to-rank approaches categorized according to their
(surrogate) loss:

Pointwise

Direct relevance
of an item

f( , )

Pairwise

Pairwise preference
over two items

f( ,  >  )

Listwise

Ranking loss over entire
list

f(  ,{   ,...,   })
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Pointwise Learning-to-Rank (1)

Pointwise ranking directly estimates the relevance of an item i for a
user u
• Classification
• Ordinal regression (for graded relevances)

Relevance probability of an item i for user u

p(i|u) = σ(f(u, i|θ))

f(u, i|θ) is a scoring function estimates the relevance score of
the item i for the user u

f( , )
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Pointwise Learning-to-Rank (2)

Pointwise ranking directly estimates the relevance of an item

Relevance probability of an item i for user u

f(  ,  ) σ p(    likes    )

Lpointwise(θ) = −
∑

(u,i)∈D

(
yu,i log σ

(
f(u, i|θ)

)
+ (1− yu,i) log

(
1− σ

(
f(u, i|θ)

)))

9



Pairwise Learning-to-Rank (1)

Pairwise ranking estimates the relative order between a pair of items

Optimizes the model parameters (during training) by maximizing
the probability of an item i to be preferred over an item j for a
user u

Relevance probability for a triplet
The probability of an item i preferred over an item j for a user u

p(i > j|u) = σ(f(u, i|θ)− f(u, j|θ)) (1)

f( ,  >  )
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Pairwise Learning-to-Rank (2)

Pairwise ranking estimates the relative order between a pair of items

Relevance probability for a triplet

f(  ,  ) σ

f(  ,  ) σ
- p(   prefers     over    )

Lpairwise(θ) = −
∑

(u,i,j)∈D′

(
yu,i>j log σ

(
f(u, i|θ)− f(u, j|θ)

)
+(1− yu,i>j) log

(
1− σ

(
f(u, i|θ)− f(u, j|θ)

)))
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Pointwise versus Pairwise Ranking

In general,

Pointwise Ranking
+ Less sensitive to noisy labels
- More sensitive to class imbalance

Pairwise Ranking
+ Better formulates the ranking problem
+ Less sensitive to class imbalance
- More sensitive to noisy labels

f( , )

f( ,  >  )
Can we combine the two adaptively and optimally?
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Adaptive Pointwise-Pairwise
Learning-to-Rank



Adaptive Pointwise-Pairwise Learning-to-Rank (1)

Adaptive Pointwise-Pairwise Ranking
3

• Adaptive combination of the two approaches
Pointwise

f( , )
Pairwise

f( ,  >  )

• The precise balance between pointwise and pairwise
contributions depends on the particular pair or triplet instance

Adaptive Pointwise-Pairwise

3Cinar & Renders, Adaptive Pointwise-Pairwise Learning-to-Rank for Content-based
Personalized Recommendation, RecSys’2020.
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Adaptive Pointwise-Pairwise Learning-to-Rank (2)

Adaptive Pointwise-Pairwise Relevance probability for a triplet
p(i > j|u) = σ(f(u, i|θ)− γ f(u, j|θ)) (2)

• γ can take values between [0, 1]
• Computed as a function of user u, items i and j, γ = g(u, i, j|θg)
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Adaptive Pointwise-Pairwise Learning-to-Rank (3)

Adaptive Pointwise-Pairwise Relevance probability for a triplet

f(  ,  ) σ

f(  ,  ) σ

g(  ,  ,  )
p(   prefers     over    )
p(   prefers     over    )

p(    likes     )

p(    likes     )

p(    dislikes     )

p(    dislikes     )

Ladaptive(θ, θg) = −
∑

(u,i,j)∈D′

(
yu,i>j log σ

(
f(u, i|θ)− g(u, i, j|θg)f(u, j|θ)

)
+(1− yu,i>j) log

(
1− σ

(
f(u, i|θ)− g(u, i, j|θg)f(u, j|θ)

)))
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Personalized Recommendation Model Details (1)

Content-based user representation

A user is represented by this user’s previous interactions (clicked
and not clicked items)

xu = µ+
u − β ⊙ µ−

u

• µ+
u ∈ Rd×1 is the mean of the user u’s clicked items’ embedding

• µ−
u ∈ Rd×1 is the mean of the user u’s non-clicked items’

embedding
• β ∈ Rd×1 scales the user negative centroid

16



Personalized Recommendation Model Details (2)

Relevance Scoring
Relevance scoring of an item i for a user u is calculated from a
simple bilinear form:

f(u, i|W) = xTi Wxu

· W ∈ Rd×d is a diagonal matrix

Adaptive Mixing
Pair scoring of an item i for a user u is calculated from a normalized
simple bilinear form:

g(i, j) =
exp(xTi Wg xj)∑

(i′,j′)∈B

exp(xTi′ Wg xj′)
(3)

· Wg ∈ Rd×d is a diagonal matrix
· g(i, j) take values between [0, 1]

17



Experiments



Datasets

INR news
• 7 days of click activity logs

Training Validation Test
days 1-3 4 5-8

• 2 news categories (vocabulary size):
• Entertainment (40K)
• Sports (30K)

• 28 articles are recommended
• 1000 users selected at random for each run with a predefined
seed initialization
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Datasets (2)

Outbrain click prediction
• 14 days of click activity logs

Training Validation Test
days 1-7 8-10 11-14

• An article is represented as a concatenation of
• category
• topic
• entity

features (total dimension of 24K)
• On average 5-6 articles are recommended, and 12 articles
maximum

• 5000 users selected at random for each run with a predefined
seed initialization

19



Experimental Setup (1)

• We compare pointwise-pairwise ranking approach with
• pointwise
• pairwise [Rendle et al., 2009]
• listwise (listNET [Cao et al., 2007], λRank [Burges, 2010],
ListAP[Revaud et al., 2019])

• other combined pointwise-pairwise (alternating [Lei et al., 2017],
joint [Wang et al., 2016])

• ADAM optimization used to update model weights with adaptive
stochastic gradient descent

• Batch norm and L1 regularization is applied
• Hyperparameters search on validation set

Learning rate {0.01, 0.0001, 0.0001}
Regularization constant {0.0001, 0.0001, 0.00001, 0.00001}
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Experimental Setup (2)

Evaluation

• Average Precision (AP)
• Normalized discounted cumulative gain at K (NDCG@K):

DCG @K =
K∑
k=1

2rel(ik)−1
log2(k+ 1)

NDCG@K =
DCG@K
iDCG@K

• Mean reciprocal rank (MRR)
MRR =

1
N

N∑
n=1

1
rankn

• Wilcoxon signed-rank test with Bonferroni correction is used
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Results on News Recommendation (1)

AP@1 NDCG MRR

0.1

0.3

0.5

INR Entertainment News

pointwise pairwise listNET λRank
listAP alternating joint PP g
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Results on News Recommendation (2)

AP@1 NDCG MRR

0.1

0.3

0.5

INR Sports News

pointwise pairwise listNET λRank
listAP alternating joint PP g
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Results on News Recommendation (3)

AP@1 NDCG

0.3

0.5

Outbrain Click Prediction

pointwise pairwise listNET λRank
listAP alternating joint PP g
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Conclusion



Conclusion

Adaptive Pointwise-Pairwise surrogate loss for Personalized
Content-based Recommendation
• The precise balance between pointwise and pairwise
contributions could depend on the particular pair or triplet
instance

• Adaptive Pointwise-Pairwise ranking significantly outperforms
pointwise, pairwise, listwise and other (combined)
pointwise-pairwise ranking approaches on several personalized
news recommendation datasets

• Future work on combining with listwise learning-to-rank loss
• https://github.com/ygcinar/
pointwise-pairwise-recommendation

25
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Period-aware Time Series
Forecasting using RNNs

Yagmur Gizem Cinar, Hamid Mirisaee, Parantapa Goswami, Ali
Aït-Bachir , Eric Gaussier



Sequence Prediction

Sequence Prediction
• Sequence prediction applies to various domains:

• Predictive assistance in user activities
e.g., auto-completing an email, next query prediction, or generating
ambient music

• Predicting usage of a resource or consumption of a product
e.g., electricity consumption, email server load
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Time Series
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□ Time Series
• Multivariate, multi-scale
• May contain pseudo-periods

pseudo-periods: time intervals across which there is a strong
correlation, positive or negative, between the values of the time
series

• May (or may not) contain missing values: random and gaps

27



Time Series Forecasting

□ State-of-the-art methods
• Stochastic methods: ARIMA, VARIMA
[Chatfield, 2003, Tiao and Box, 1981]

• Kernel methods: Support Vector Machines
[Müller et al., 1997, Sapankevych and Sankar, 2009]

• Ensemble methods: Random Forests [Kane et al., 2014]
• Neural Network methods: Recurrent Neural Networks
[Werbos, 1988, Gers et al., 2001]

Recent sequence modeling breakthrough:
sequence-to-sequence RNNs
[Sutskever et al., 2014, Bahdanau et al., 2014, Xingjian et al., 2015]
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Time Series Forecasting

□ State-of-the-art methods
• Stochastic methods: ARIMA, VARIMA
[Chatfield, 2003, Tiao and Box, 1981]

• Kernel methods: Support Vector Machines
[Müller et al., 1997, Sapankevych and Sankar, 2009]

• Ensemble methods: Random Forests [Kane et al., 2014]
• Neural Network methods: Recurrent Neural Networks
[Werbos, 1988, Gers et al., 2001]

Recent sequence modeling breakthrough:
sequence-to-sequence RNNs
[Sutskever et al., 2014, Bahdanau et al., 2014, Xingjian et al., 2015]

□ Research questions
• Can (sequence-to-sequence) Recurrent Neural Networks (RNNs)
model pseudo-periods in time series?

• Are they robust to missing values?
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Background: RNNs with attention mechanism

Deep Recurrent Neural Networks (RNNs) with attention mechanism

Sequence-to-sequence prediction with attention mechanism
[Bahdanau et al., 2014]
Encoder: Forward and backward RNNs for an
input sequence x (Bidirectional RNNs)

(x1, ..., xT)⇒ (
−→
h 1, ...,

−→
h T) hj =

(−→
h ⊤
j←−

h ⊤
j

)
(xT, ..., x1)⇒ (

←−
h 1, ...,

←−
h T)

Attention:
eij = vTa tanh(Wasi−1 + Uahj)

αij =
exp(eij)∑T
k=1 exp(eik)

, ci =
T∑
j=1

αijhj

Decoder:
si = g(yi−1, si−1, ci)

−→
h1

←−
h1

←−
hj

−→
hj

←−
hT

−→
hT

. . .

. . .

. . .

. . .

x1 xj xT

⊕
αi,1

αi,j

αi,T

. . .

yi−1

si−1 si

yiy1

s1 . . .

yT ′

sT ′
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Visualization of Periods and Attention weights

Time Series Forecasting - Visualization of Periods and Attention
weights

• Attention weights as an (indirect) indication of the capacity to
capture periods
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PSE: Polish electricity load time series
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Modeling pseudo-periods



Period-aware content attention mechanism (1)

Modeling periods in time series4
Explicitly model all relative positions and learn a weight to re-weigh
the importance of given input according to relative position with
respect to output

RNN-π: π is a vector of dimension T (∈ RT)
eij = vTa tanh(Wasi−1

+ Ua(πi−j hj)) 1(i−j≤T)

αij =
exp(eij)∑T
k=1 exp(eik)

ci =
T∑
j=1

αijhj

⊕
αi,1

αi,j

αi,T

. . .

yi−1

si−1 si

yi

. . .

−→
h1

←−
h1

←−
hj

−→
hj

←−
hT

−→
hT

. . .

. . .

. . .

. . .

x1 xj xT

⊗ ⊗ ⊗. . . . . .πl

...

...
l = T + i− j

1

T

ci

4Cinar et al., Period-aware Content Attention RNNs for Time Series Forecasting with
Missing Values, Neurocomputing 2018.
Cinar et al., Position-based Content Attention for Time Series Forecasting with
Sequence-to-Sequence RNNs, ICONIP 2017.
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Period-aware content attention mechanism (2)
Modeling periods in time series 5
Explicitly model all relative positions and learn a weight to re-weigh
the importance of given input according to relative position with
respect to output

RNN-Π: Π is a matrix in R2n×T

eij = vTa tanh(Wasi−1
+ Ua(Π·(i−j) ⊙ hj)) 1(i−j≤T)

αij =
exp(eij)∑T
k=1 exp(eik)

ci =
T∑
j=1

αijhj

l = T + i− j

1

T

πl,2n

...

...
πl,1

...

...
. . .

ci

⊕
αi,1

αi,j

αi,T

−→
h1

←−
h1

←−
hj

−→
hj

←−
hT

−→
hT

. . .

. . .

. . .

. . .

x1 xj xT

⊗ ⊗ ⊗. . . . . .

. . .

yi−1

si−1 si

yi

. . .

5Cinar et al., Period-aware Content Attention RNNs for Time Series Forecasting with
Missing Values, Neurocomputing 2018.
Cinar et al., Position-based Content Attention for Time Series Forecasting with
Sequence-to-Sequence RNNs, ICONIP 2017.
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Multivariate Extensions (1)

For a K multivariate time series, each time series might have a
particular pseudo-periods, 1 ≤ k ≤ K
For RNN-π/Π:

. . .

yi−1

si−1 si

yi

. . .

ci

ci,1 . . . ci,K

. . .

. . .. . . . . .⊗ ⊗ ⊗π/Π

. . . . . .⊗ ⊗ ⊗π/Π
−→
h1

←−
h1

←−
hj

−→
hj

←−
hT

−→
hT

. . .

. . .

. . .

. . .

x
(1)
1 x

(1)
j x

(1)
T

x
(K)
1 x

(K)
j x

(K)
T

−→
h1

←−
h1

←−
hj

−→
hj

←−
hT

−→
hT

. . .

. . .

. . .

. . .

⊕
α
(1)
i,1

α
(1)
i,j

α
(1)
i,T

⊕
α
(K)
i,1

α
(K)
i,j

α
(K)
i,T
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Multivariate Extensions (2)

For a K multivariate time series, each time series might have a
particular pseudo-periods, 1 ≤ k ≤ K
For RNN-Πm: Πm is a matrix in R2Kn×T

. . .

yi−1

si−1 si

yi

. . .

ci

. . . . . .

⊕
αi,1

αi,j

αi,T

⊗ ⊗ ⊗

−→
h1

←−
h1

←−
hj

−→
hj
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hT

−→
hT

. . .

. . .

. . .

. . .
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1 x
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j x
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.
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.

.

.

.

.

.

Πm
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Datasets

Experiments on 6 publicly available time series data sets from
different sources

History: the length of the historical input
Horizon: the length of the future, output to predict

Name Usage #Instances History Horizon Sampling rate
Polish Electricity (PSE) Univariate 46379 96 4 2 hours
Polish Weather (PW ) Univariate 4595 548 7 1 days
Numenta Benchmark (NAB) Univariate 18050 72 6 5 minutes
Air Quality (AQ) Univ./Multiv. 9471 192 6 1 hour
Appliances Energy Pred. (AEP) Univ./Multiv. 19735 216 6 10 minutes
Ozone Level Detection (OLD) Univ./Multiv. 2536 548 7 1 day

Evaluation

• Mean Squared Error (MSE)
• Symmetric Mean Absolute Percentage Error (SMAPE)
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Univariate Forecasting results

Overall results for univariate case with Mean Squared Error MSE (left
value) and Symmetric Mean Absolute Percentage Error SMAPE (right
value)

Data RNN-A RNN-π RNN-Π ARIMA RF Selected
AQ 0.282∗(0.694) 0.257(0.661) 0.250(0.669) 0.546∗(0.962) 0.299∗(0.762) Π

OLD 0.319∗(0.595) 0.271(0.523) 0.275(0.586) 0.331∗(0.619) 0.305∗(0.606) Π

AEP 0.025∗(0.085) 0.029∗(0.101) 0.027∗(0.095) 0.021(0.066) 0.021(0.085) Π

NAB 0.642∗(0.442) 0.475(0.323) 0.540∗(0.369) 1.677∗(1.310) 0.779∗(0.608) Π

PW 0.166∗(0.558) 0.152(0.547) 0.162∗(0.565) 0.213∗(0.610) 0.156(0.544) π

PSE 0.034∗(0.282) 0.032(0.264) 0.033∗(0.256) 0.623∗(1.006) 0.053∗(0.318) π
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Attention weights

Period-aware attention weights

Attention weights as an (indirect) indication of the capacity to
capture periods
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Multivariate Forecasting results

Overall results for multivariate case with mean squared error (MSE)

Dataset RNN-A RNN-π RNN-Π RNN-Πm RF Selected model
AQ 0.352∗ 0.276∗ 0.268 0.300∗ 0.450∗ Πm

OLD 0.336∗ 0.328∗ 0.327∗ 0.274 0.315∗ Πm

AEP 0.029∗ 0.024 0.036∗ 0.026∗ 0.027∗ Πm
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Conclusion

• Two univariate period-aware extensions:
1. RNN-π: models periods by using a vector of relative positions
2. RNN-Π: models periods by using a matrix of relative positions
(finer granularity)

• Three multivariate extensions:
1. Individual attention mechanism per variable: RNN-π, RNN-Π
2. One global attention mechanism over all variables: RNN-Πm

• Two approaches for handling missing values:
• Exponential weight decay
• Relative position in the gap

• Proposed models outperform baselines of standard RNNs, RFs
and ARIMA
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Thank You!
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Standard attention with position information

Mean squared error values for Sequence-to-sequence RNNs with
attention (RNN-A) with and without position information on PSE .
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Handling Missing Values

• Imputation of missing values
padding, interpolation

• How much can we rely on imputed values?

Two reweighing schemes:

1. A decaying function: µ ∈ RT

• a priori adapted to padding

2. At the beginning, middle or end of a gap: M ∈ R3×T

• a priori adapted to interpolation methods

ω(j) =
{

exp(−µj(j− jlast))
1+MT

·jPos(j; θ
g
1 , θ

g
2 )



Forecasting results of handling missing values

Different levels of missing values:

5 %, 10 %, 15 %, 20 %, 30 %, 40 %

Table 1: Univariate prediction on datasets with missing values and gaps,
MSE(SMAPE)

Dataset Selected-π/Π Selected-π/Π-µ/M RNN-A RNN-π/Π RNN-π/Π-µ/M Selected model

PSE5 π Π-µ 0.064∗ (0.345) 0.059∗ (0.316) 0.055(0.31) Π-µ
PSE10 π π-µ 0.066∗ (0.353) 0.055∗ (0.318) 0.052(0.314) π-µ
PSE15 Π π-µ 0.09∗ (0.36) 0.083(0.357) 0.081(0.332) π-µ
PSE20 π π-µ 0.079∗ (0.374) 0.078∗ (0.369) 0.074(0.344) π-µ
PSE30 π π-µ 0.104∗ (0.419) 0.102∗ (0.386) 0.098(0.384) π-µ
PSE40 π Π-M 0.113∗ (0.428) 0.119∗ (0.411) 0.106(0.393) Π-M

PW5 π π-M 0.161(0.556) 0.157(0.555) 0.164∗ (0.566) π

PW10 π π-M 0.16∗ (0.557) 0.153(0.54) 0.155(0.542) π

PW15 π π-µ 0.167(0.569) 0.167(0.556) 0.163(0.55) π-µ
PW20 π Π-M 0.209∗ (0.6) 0.182(0.551) 0.177(0.553) Π-M
PW30 π π-M 0.177∗ (0.571) 0.163(0.556) 0.161(0.549) π-M
PW40 π π-µ 0.181∗ (0.568) 0.172(0.564) 0.164(0.534) π
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